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LIE ALGEBRA glr+1

Let Ei,j for i = 1, . . . , r + 1 be the standard generators of glr+1. The
commutator relations are given by

[Ei,j,Es,k] = δj,sEi,k − δi,kEs,j.

We have the triangular decomposition

glr+1 = n+ ⊕ h⊕ n−,

where

n+ =
⊕
i<j

C · Ei,j, h =

r+1⊕
i=1

C · Ei,i, n− =
⊕
i>j

C · Ei,j.

slr+1 is the simple Lie algebra of type A with Lie algebra rank r. The
representations of slr+1 are almost the same as those of glr+1.
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VECTOR REPRESENTATION

Set V = Cr+1. Let ei ∈ Cr+1 be the vector with 1 on the i-th component
and 0 on all the other components, then {ei}r+1

i=1 is a basis of V. Define
the standard action of glr+1 on V by

Ei,jek = δj,kei.

V is the vector representation of glr+1. Let v+ = e1 be the highest
weight vector of V, we have

Ei,iv+ = δ1,iv+, n+v+ = 0, for i = 1, . . . , r + 1.

V is the irreducible glr+1 representation with highest weight ω1,
where ω1 ∈ h∗ and ω1(Ei,i) = δ1,i.
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TENSOR PRODUCT OF VECTOR REPRESENTATIONS

Let n be a positive integer. If X ∈ End(V), then we denote by
X(i) ∈ End(V⊗n) the operator id⊗i−1 ⊗ X ⊗ id⊗n−i acting non-trivially
on the i-th factor of the tensor product. Then for any X ∈ glr+1, the
action of X on V⊗n is given by

∑n
i=1 X(i).

Example: E11(v+ ⊗ v+ ⊗ · · · ⊗ v+)
= E11v+⊗v+⊗· · ·⊗v++v+⊗E11v+⊗· · ·⊗v++· · ·+v+⊗v+⊗· · ·⊗E11v+

= n(v+ ⊗ v+ ⊗ · · · ⊗ v+).

Let (V⊗n)sing = {v ∈ V⊗n | n+v = 0} be the subspace of singular
vectors in V⊗n. For µ ∈ h∗ let

(V⊗n)µ = {v ∈ V⊗n | hv = µ(h)v, for all h ∈ h∗}

be the subspace of V⊗n of vectors of weight µ. Denote the singular
space of weight µ in V⊗n by (V⊗n)

sing
µ = (V⊗n)sing ∩ (V⊗n)µ.
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GAUDIN MODEL

The Gaudin model was introduced by [Gaudin 1976] for the case of
Lie algebra gl2 and later generalized by [Gaudin 1983] for all simple
Lie algebras.

Let z = (z1, . . . , zn) be a point in Cn with distinct coordinates.
Introduce linear operatorsH1(z), . . . ,Hn(z) on V⊗n by the formula

Hi(z) =
∑
j, j6=i

∑r+1
a,b=1 E(i)

a,b ⊗ E(j)
b,a

zi − zj
.

The operatorsH1(z), . . . ,Hn(z) are called the (quadratic) Gaudin
Hamiltonians of the Gaudin model associated with V⊗n.

The operator
∑r+1

a,b=1 E(i)
a,b ⊗ E(j)

b,a acts on V⊗n simply by permuting the
i-th and j-th factors.
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GAUDIN MODEL

Proposition

The Gaudin Hamiltonians commute, [Hi(z),Hj(z)] = 0 for all i, j. The
Gaudin Hamiltonians commute with the action of glr+1, [Hi(z),X] = 0 for
all i and X ∈ glr+1. In particular, for any µ ∈ h∗, the Gaudin Hamiltonians
preserve the subspace (V⊗n)

sing
µ ⊂ V⊗n.

The main problem for the Gaudin model is to find common
eigenvectors and eigenvalues of the Gaudin Hamiltonians. By the
proposition, it suffices to do that in the subspace (V⊗n)

sing
µ .

The main method is the algebraic Bethe Ansatz method.
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WHAT IS BETHE ANSATZ METHOD?

The algebraic Bethe Ansatz method is a certain construction of
eigenvectors for a family of commuting operators, which contains the
Gaudin Hamiltonians.

The idea of this construction is to find a vector-valued function of a
special form and determine its arguments in such a way that the
value of this function is an eigenvector.

The function is called weight function. The equations which
determine the special values of arguments are called the Bethe
Ansatz equations.

The method was invented by [Bethe 1931] to find the exact spectrum
of the one-dimensional antiferromagnetic Heisenberg model.
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EXAMPLE OF CASE gl2 [GAUDIN 1976]

Consider the tensor product

(C2)⊗n = C2 ⊗ · · · ⊗ C2

and introduce the generating function

K(u) =

n∑
i=1

Hi(z)

u− zi
, for u ∈ C.

Then [K(u),K(w)] = 0 for all u,w ∈ C.

To diagonalize operators K(u) for all u ∈ C is equivalent to
simultaneous diagonalization of the Gaudin Hamiltonians.
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Note that

Hi(z) =
∑
j6=i

E(i)
1,2 ⊗ E(j)

2,1 + E(i)
2,1 ⊗ E(j)

1,2 + E(i)
1,1 ⊗ E(j)

1,1 + E(i)
2,2 ⊗ E(j)

2,2

zi − zj
,

the vector |0〉 := v+ ⊗ · · · ⊗ v+ ∈ (C2)⊗n is an eigenvector of the

Gaudin Hamiltonians;Hi(z)|0〉 =
(∑

j 6=i

1
zi − zj

)
|0〉, therefore |0〉 is an

eigenvector of K(u).

Introduce operators E2,1(t), t ∈ C, on the spaces (C2)⊗n by the
formula

E2,1(t) =

n∑
i=1

E(i)
2,1

t− zi
.

Now consider the vector

|t1, . . . , tl〉 = E2,1(t1) . . .E2,1(tl)|0〉.
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It is proved by explicit calculation in [Gaudin 1976] that

K(u)|t1, . . . , tl〉 = sl(u)|t1, . . . , tl〉

+

l∑
j=1

kj

u− tj
|t1, . . . , tj−1,u, tj+1, . . . , tl〉,

where

kj =

n∑
i=1

1
tj − zi

−
∑
s 6=j

2
tj − ts

,

sl(u) =
∑

16i<j6n

1
(u− zi)(u− zj)

−
n∑

i=1

l∑
j=1

1
(u− zi)(u− tj)

+
∑

16i<j6l

2
(u− ti)(u− tj)

.
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If we take t1, . . . , tl such that kj = 0 for all j = 1, . . . , l, then the vector
|t1, . . . , tl〉 becomes an eigenvector of K(u). The system of equations
kj = 0 for all j = 1, . . . , l is called the Bethe Ansatz equation (BAE).
The vector |t1, . . . , tl〉 is called a Bethe vector.

By computing the residues, we get the corresponding eigenvalues of
Hi(z), that is

Hi(z)|t1, . . . , tl〉 =
(∑

j6=i

1
zi − zj

−
l∑

j=1

1
zi − tj

)
|t1, . . . , tl〉.

Moreover, the residue of sl(u) at u = tj is kj = 0 for each j. Hence sl(u)
is regular at tj for all j = 1, . . . , l.
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MASTER FUNCTION FOR gl2
We introduce a rational function Φ(t; z), where t = (t1, . . . , tl) and
z = (z1, . . . , zn), by the formula

Φ(t; z) =
∏

16i<j6n

(zi − zj)

l∏
i=1

n∏
j=1

(ti − zj)
−1

∏
16i<j6l

(ti − tj)
2.

Then we have
ki =

(
Φ−1 ∂Φ

∂ti

)
(t; z),

Hi(z)|t1, . . . , tl〉 =
(

Φ−1 ∂Φ

∂zi

)
(t; z)|t1, . . . , tl〉,

if t = (t1, . . . , tl) satisfies BAE. Moreover, with the standard inner
product on (C2)⊗n, we have

(|t1, . . . , tl〉, |t1, . . . , tl〉) = det
16i,j6l

(
∂2

∂ti∂tj
ln Φ(t; z)

)
.
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MASTER FUNCTION FOR glr+1

Fix a sequence of non-negative integers l = (l1, . . . , lr). Denote
l = l1 + · · ·+ lr, α(l) = l1α1 + · · ·+ lrαr, Λ∞ = nω1 − α(l). Introduce
the master function Φ(t; z) which is a function of l variables

t = (t(1)
1 , . . . , t(1)

l1
; . . . ; t(r)

1 , . . . , t(r)
lr )

by the formula

Φ(t; z) =
∏

16i<j6n

(zi − zj)

l1∏
j=1

n∏
s=1

(t(1)
j − zs)

−1

×
r∏

i=1

∏
16j<s6li

(t(i)
j − t(i)

s )2
r−1∏
i=1

li∏
j=1

li+1∏
k=1

(t(i)
j − t(i+1)

k )−1



LIE ALGEBRA BETHE ANSATZ IN GAUDIN MODEL COMPLETENESS CONNECTIONS AND PROPOSED RESEARCH

BETHE ANSATZ EQUATION

A point t ∈ Cl is called a critical point of Φ(· ; z), ifΦ−1 ∂Φ

∂t(i)
j

 (t; z) = 0, for i = 1, . . . , r and j = 1, . . . , li.

In other words, the following system of algebraic equations is
satisfied,

0 =

n∑
s=1

δ1,i

t(i)
j − zs

−
li∑

s=1,s 6=j

2

t(i)
j − t(i)

s
+

li+1∑
s=1

1

t(i)
j − t(i+1)

s
+

li−1∑
s=1

1

t(i)
j − t(i−1)

s
.

This system of the equations is called the Bethe Ansatz equation
associated to glr+1 Gaudin model.
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The product of symmetric group Σl = Σl1 × · · · × Σlr acts on the
variables t by permuting the coordinates with the same upper index.
The master function is Σl-invariant. The set of critical points of
Φ(· ; z) is Σl-invariant. We will not distinguish critical points in the
same Σl-orbit.

For a critical point t, define the tuple yt = (y1, . . . , yr) of polynomials
of x by

yi(x) =

li∏
j=1

(x− t(i)
j ) for i = 1, . . . , r.

Solving BAE is equivalent to finding coefficients of yi. We say that yt

represent the critical point t.
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GENERAL MASTER FUNCTION

Fix a simple Lie algebra g, a sequence of weights Λ = (Λi)
n
i=1, Λi ∈ h∗,

and a sequence of non-negative integers l = (l1, . . . , lr). Denote
LΛ = LΛ1 ⊗ LΛ2 ⊗ · · · ⊗ LΛn , l = l1 + · · ·+ lr, α(l) = l1α1 + · · ·+ lrαr,
and Λ∞ = Λ1 + · · ·+ Λn − α(l). Introduce the master function
Φg,Λ,l(t; z) which is a function of l variables

t = (t(1)
1 , . . . , t(1)

l1
; . . . ; t(r)

1 , . . . , t(r)
lr )

by the formula

Φg,Λ,l(t; z) =
∏

16i<j6n

(zi − zj)
(Λi,Λj)

r∏
i=1

li∏
j=1

n∏
s=1

(t(i)
j − zs)

−(Λs,αi)

×
r∏

i=1

∏
16j<s6li

(t(i)
j − t(i)

s )(αi,αi)
∏

16i<j6r

li∏
s=1

lj∏
k=1

(t(i)
s − t(j)

k )(αi,αj).
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WEIGHT FUNCTION

The formula for the Bethe vector is a rational map

ω : Cl × Cn → (V⊗n)Λ∞ , (t, z) 7→ ω(t; z)

called the canonical weight function, which was introduced by
[Matsuo 1990] for glr+1 and by [Schechtman-Varchenko 1991] for all
simple Lie algebras.

Let t ∈ Cl be a critical point of the master function Φ(· ; z). Then the
value of the weight function ω(t ; z) ∈ (V⊗n)Λ∞ is called the Bethe
vector.

Note that dim Lλ <∞ if and only if λ ∈ h∗ is dominant integral.

Lemma (Mukhin-Varchenko 2004)
If weight Λ∞ is dominant integral, then the set of critical points is finite.
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Assume that t ∈ Cl is an isolated critical point of the master function
Φ(· ; z). Then with the standard inner product (· , · ),

(ω(t; z), ω(t; z)) = det
16i,j6l

(
∂2

∂ti∂tj
ln Φ(t; z)

)
.

This equality is proved by [Varchenko 2006] for the general setting.

Theorem (Varchenko 2011)
The Bethe vector ω(t; z) is non-zero.

Theorem (Reshetikhin-Varchenko 1995)
The Bethe vector ω(t; z) is singular, ω(t; z) ∈ (V⊗n)

sing
Λ∞

. Moreover, ω(t; z)
is a common eigenvector of the Gaudin Hamiltonians,

Hi(z)ω(t; z) =

(
Φ−1 ∂Φ

∂zi

)
(t; z)ω(t; z), i = 1, . . . ,n.
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COMPLETENESS

Bethe Ansatz Conjecture

The number of solutions of BAE equals to dim(V⊗n)
sing
Λ∞

and the Bethe
vectors obtained from those solutions form a basis of (V⊗n)

sing
Λ∞

.

This conjecture is true for generic z. For general setting, the conjecture
is false. In [Mukhin-Varchenko 2007], there is a counterexample for
which the conjecture is false for all z. When z is generic, the
conjecture is true for the following cases with certain tensor products

I Lie algebra glr+1 [Mukhin-Varchenko 2005]
I Lie superalgebra gl(p|q) [Mukhin-Vicedo-Young 2015]
I Lie algebras of types B,C,D [L-Mukhin-Varchenko 2015]



LIE ALGEBRA BETHE ANSATZ IN GAUDIN MODEL COMPLETENESS CONNECTIONS AND PROPOSED RESEARCH

COMPLETENESS FOR TYPES B,C,D

The starting point is the tensor products of the first fundamental
representations Lω1 . The Lω1 plays the similar role as V in glr+1. To
this end, we begin with the 2-point case Lλ ⊗ Lω1 .

For 2-point case, we can always rescale (z1, z2) to (0, 1). Note that the
decomposition of Lλ ⊗ Lω1 is multiplicity-free for all dominant
integral weights λ. We expect to solve the BAE explicitly.

This is equivalent to finding the coefficients of a tuple of polynomials
yt, which represents this solution. In all previously known results for
the multiplicity-free cases, those coefficients can be completely
factorized into products of linear functions of the parameters with
integer coefficients. The difficulty for types B,C,D is that the
coefficients can not be factorized in such a fashion.
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Our idea comes from the reproduction procedure studied in
[Mukhin-Varchenko 2008]. This reproduction procedure allows us to
reduce the problem to the trivial case l = (0, . . . , 0) with different
initial data. By solving the BAE, we obtain that the constant terms of
those polynomials whose degrees are at most 2 are factorizable while
the linear coefficients can be expressed as sums of two factorizable
terms.

Theorem (L-Mukhin-Varchenko 2015)
The set of Bethe vectors ω(t; z1, z2), where t runs over the solutions to the
Bethe Ansatz equations with l, forms a basis of (Lλ ⊗ Lω1)

sing. Moreover, for
types B and C, the Gaudin Hamiltonians have simple joint spectrum.

The spectrum is not simple for type D since the Dynkin diagram for
type D has a nontrivial symmetry.
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Let λi = 〈λ, α∨i 〉 ∈ Z>0. For the case l = (2, . . . , 2), the constant term
of the quadratic polynomial yk, k = 1, . . . , r, is2r−l∏

j=1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l− j− 1
λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l− j

2

×
r−1∏

j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 2
λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 1

×
k−1∏

j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 2
λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 1

×
r−k∏
i=1

λ2r−l+1 + · · ·+ λr−i + l− r− i− 1
λ2r−l+1 + · · ·+ λr−i + l− r− i

×2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l− 2r− 3
2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l− 2r− 1

.
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The linear coefficient of the quadratic polynomial yk is
2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l− 2r− 3
2λ2r−l+1 + · · ·+ 2λr−1 + λr + 2l− 2r− 2

×
2r−l∏
j=1

λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l− j− 1
λj + · · ·+ λ2r−l + 2λ2r−l+1 + · · ·+ 2λr−1 + λr + l− j

×

 k−1∏
j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 2
λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 1

+

r−1∏
j=2r−l+1

λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 2
λ2r−l+1 + · · ·+ λj + 2λj+1 + · · ·+ 2λr−1 + λr + l− j− 1

×
r−k∏
i=1

λ2r−l+1 + · · ·+ λr−i + l− r− i− 1
λ2r−l+1 + · · ·+ λr−i + l− r− i

)
.



LIE ALGEBRA BETHE ANSATZ IN GAUDIN MODEL COMPLETENESS CONNECTIONS AND PROPOSED RESEARCH

We can reduce the completeness for Lλ ⊗
(
L⊗n
ω1

)
case to the case of

n = 2 by sending all zi to the same number with different rates. We
can generalize the theorem to the general n, that is for the tensor
product Lλ ⊗

(
L⊗n
ω1

)
for all dominant integral weight λ.

Theorem (L-Mukhin-Varchenko 2015)
Let g = so2r+1 or so2r or sp2r. For generic z there exists a set of solutions
{ti, i ∈ I} of the Bethe Ansatz equation such that the corresponding Bethe
vectors {ω(ti; z), i ∈ I} form a basis of

(
Lλ ⊗ L⊗n

ω1

)sing. If g = so2r+1 or
sp2r, the Gaudin Hamiltonians have simple joint spectrum.
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SELBERG INTEGRAL

Consider the case gl2, n = 2, Λ = (λ1, λ2), z = (0, 1). Then for given l,
we have

Φ(t; z) =

l∏
j=1

t−λ1
j (1− tj)

−λ2
∏

16i<j6l

(ti − tj)
2.

The Selberg integral is

∫
∆

Φ
1
κ dt =

l−1∏
j=0

Γ((−λ1 + j)/κ+ 1)Γ((−λ2 + j)/κ+ 1)Γ((j + 1)/κ+ 1)

(j + 1)Γ((−λ1 − λ2 + (2l− j− 2))/κ+ 2)Γ(1/κ+ 1)
,

where ∆ = {t ∈ Rl | 0 < t1 < · · · < tl < 1}.
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The following is a conjecture made by [Mukhin-Varchenko 2000] for
the case of tensor product of two highest weight modules.

If dim(Lλ ⊗ Lµ)
sing
Λ∞

= 1, then the integral
∫

Φ1/κdt for some region can
be computed explicitly in terms of Gamma functions.

There is a 43 pages paper written by [Forrester-Warnaar 2007] about
the importance of Selberg integral. There are several results in this
direction:

I for the sl3 case [Tarasov-Varchenko 2003];
I for the slr+1 case [Warnaar 2009];
I for the B,C,D case with Lω1 ⊗ Lω1 [Mimachi-Takamuki 2004].

We hope to compute this integral for type B (and C,D) with Lλ ⊗ Lω1 .
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EXAMPLE [THEOREM 6.7.1, SZEGÖ]

The Jacobi polynomial P(a,b)
l (t) satisfies the following differential

equation

(1− t2)y′′ + (b− a− t(a + b + 2))y′ + l(a + b + l + 1)y = 0.

The roots t1, . . . , tl of P(a,b)
l (t) are simple and satisfy the following

system of equations

a + 1
tj − 1

+
b + 1
tj + 1

+
∑
k 6=j

2
tj − tk

= 0,

for any j = 1, . . . , l.

This is the Bethe Ansatz equation associated to gl2, z = (1,−1),
L−a−1 ⊗ L−b−1, l = (l).
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ORTHOGONAL POLYNOMIAL

The previous example explains how the solutions of BAE for the gl2
case are related to the Jacobi polynomials.

The Jacobi polynomials are orthogonal polynomials,∫ 1

−1
P(a,b)

m (x)P(a,b)
n (x)(1− x)a(1 + x)bdx

=
2a+b+1

2m + a + b + 1
Γ(m + a + 1)Γ(m + b + 1)

Γ(m + a + b + 1)m!
δn,m, a, b > −1.

For the case of slr+1, Λ = (Λ, kω1), where k ∈ Z>0, the solutions of the
Bethe Ansatz equations are related to zeros of Jacobi-Piñeiro
polynomials which are multiple orthogonal polynomials,
[Mukhin-Varchenko 2007].
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FUCHSIAN DIFFERENTIAL OPERATORS

Let λ(1), . . . ,λ(n),λ be partitions of length at most r + 1, where
λ = (λ1, . . . , λr+1) and λ(s) = (λ

(s)
1 , . . . , λ

(s)
r+1) for all s = 1, . . . ,n. Set

Λ = (λ(1), . . . ,λ(n)). Let ∆Λ,λ,z be the set of all monic Fuchsian
differential operators of order r + 1,

D = ∂r+1
u +

r+1∑
i=1

hDi (u)∂r+1−i
u ,

with the following properties:
I The singular points of D are z1, . . . , zn and∞.
I The exponents of D at zs, s = 1, . . . ,n, are
λ

(s)
r+1, λ

(s)
r + 1, . . . , λ(s)

1 + r.
I The exponents of D at∞, s = 1, . . . ,n, are
−r− λ1, 1− r− λ2, . . . ,−λr+1.

I The operator D has no monodromy.
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HIGHER GAUDIN HAMILTONIANS

Consider glr+1 Gaudin model with glr+1 modules Lλ(s) , s = 1, . . . ,n.

There exist commuting operators Bi,j in End(
⊗n

s=1 Lλ(s)), for all
i = 1, . . . , r + 1, j ∈ Z>i. The operators Bi,j are called higher Gaudin
Hamiltonians.

Set Bi(u) =
∑∞

j=i Biju−j, then we have

B2(u) =

n∑
i=1

Hi(zi)

u− zi
+

n∑
i=1

kλ(i)

(u− zi)2 ,

kλ(i) is a constant related to the action of the Casimir element on Lλ(i) .
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Theorem (Mukhin-Tarasov-Varchenko 2009)
There exists a bijection between the set of common eigenvectors of the action
of Bi,j on (

⊗n
s=1 Lλ(s))

sing
λ and the set ∆Λ,λ,z. More specifically, for each

common eigenvector v, denote Bi(u)v = hi(u)v then

∂r+1
u +

r+1∑
i=1

hi(u)∂r+1−i
u ∈ ∆Λ,λ,b.

Moreover, Bi,j have simple joint spectrum (for all z) and they generate a
maximal commutative subalgebra of dimension dim(

⊗n
s=1 Lλ(s))

sing
λ in

End(
⊗n

s=1 Lλ(s)).
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SCHUBERT CALCULUS

Set λ̄ = (d− r− 1− λr+1, . . . , d− r− 1− λ1) for enough large d ∈ Z>0.
We define the intersection of Schubert cells ΩΛ,λ̄,z on the
Grassmannian of Cd[u] . The space of polynomials X is a point of
ΩΛ,λ̄,z if and only if X is the kernel of a differential operator in ∆Λ,λ,z.
We call X ∈ ΩΛ,λ̄,z real if X has a basis consisting of polynomials with
real coefficients. Equivalently, a point D ∈ ∆Λ,λ,z is real if all hDi (x)
are rational functions with real coefficients.

Theorem (Mukhin-Tarasov-Varchenko 2009)
Let z1, . . . , zn be distinct real numbers. Then ΩΛ,λ̄,z consist of
dim(

⊗n
s=1 Lλ(s))

sing
λ distinct real points.

This is called the strong form of the B. and M. Shapiro conjecture.
In particular, the theorem implies the transversality of the
intersection. This statement was a long-standing conjecture, see
[Eisenbud-Harris 1986] and [Sottile 2000].
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It is proved that for types B,C the solutions of BAE also correspond to
Fuchsian differential operators, see [Mukhin-Varchenko 2004]. In the
cases of types B,C, we can associate each critical point to a differential
operator whose kernel is a vector space of polynomials with certain
symmetry. Such a space is called self-dual space. We hope to
understand the geometric property of this subset consisting of all the
dual spaces.

It is also proved that the coefficients of the constructed differential
operator correspond to the eigenvalues of higher Gaudin
Hamiltonians with respect to the corresponding Bethe vector for
types B,C, see [Mukhin-Molev 2015]. This result gives hope of
applications of Gaudin models of types B,C in geometry. The long
term goal is to establish the similar statements as the previous
theorems for types B, C. In particular, we would like to prove the
(higher) Gaudin Hamiltonians have simple joint spectrum for all z.
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Thank you!



Q & A



WHY VECTOR REPRESENTATION?

Solving Bethe Ansatz equation for arbitrary case is impossible. But it
is possible to solving it for tensor product of two representation with
multiplicity-free decomposition. The BAE for vector representation is
relatively easy to solve.

The Schur-Weyl duality tells us that every finite-dimensional
irreducible representation is included in V⊗n when n is large enough.
Though we can’t solve BAE for the tensor product of arbitrary
finite-dimensional irreducible representations, we can collide some zi
making them equal and use the result from vector representation to
deduce results for more general cases with generic z.

This also suggests us to solve BAE for the tensor products of the first
fundamental representations for types B,C,D as a first step.



WEIGHT FUNCTION

In 1991, Schechtman and Varchenko defined a rational map

ω : Cl × Cn → (LΛ)Λ∞ , (t, z) 7→ ω(t; z)

called the canonical weight function. Let P(l,n) be the set of
sequences I = (i11, . . . , i

1
j1 ; . . . ; in1 , . . . , i

n
jn) of integers in {1, . . . , r} such

that for all i = 1, . . . , r, the integer i appears in I precisely li times. To
every I ∈ P(l,n) we associate a vector

EIv = Ei11+1,i11
. . .Ei1j1 +1,i1j1

v+ ⊗ · · · ⊗ Ein1+1,in1 . . .Einjn +1,injn
v+

in (LΛ)Λ∞ , and certain rational functions ωI. We set

ω(t; z) =
∑

I∈P(l,n)

∑
sym

ωIEIv.



EXAMPLE OF WEIGHT FUNCTION

Consider the vector representation of glr+1. If l = (1, 1, 0, . . . , 0), then

ω(t; z) =
E2,1E3,2v+ ⊗ v+

(t(1)
1 − t(2)

1 )(t(2)
1 − z1)

+
E3,2E2,1v+ ⊗ v+

(t(2)
1 − t(1)

1 )(t(1)
1 − z1)

+
E2,1v+ ⊗ E3,2v+

(t(1)
1 − z1)(t(2)

1 − z2)
+

E3,2v+ ⊗ E2,1v+

(t(2)
1 − z1)(t(1)

1 − z2)

+
v+ ⊗ E2,1E3,2v+

(t(1)
1 − t(2)

1 )(t(2)
1 − z2)

+
v+ ⊗ E3,2E2,1v+

(t(2)
1 − t(1)

1 )(t(1)
1 − z2)

=
E3,2E2,1v+ ⊗ v+

(t(2)
1 − t(1)

1 )(t(1)
1 − z1)

+
v+ ⊗ E3,2E2,1v+

(t(2)
1 − t(1)

1 )(t(1)
1 − z2)

.



EXAMPLES OF WEIGHT FUNCTION

If l = (2, 0, . . . , 0), then

ω(t; z)

=
( 1

(t(1)
1 − t(1)

2 )(t(1)
2 − z1)

+
1

(t(1)
2 − t(1)

1 )(t(1)
1 − z1)

)
E2

2,1v+ ⊗ v+

+
( 1

(t(1)
1 − z1)(t(1)

2 − z2)
+

1

(t(1)
2 − z1)(t(1)

1 − z2)

)
E2,1v+ ⊗ E2,1v+

+
( 1

(t(1)
1 − t(1)

2 )(t(1)
2 − z2)

+
1

(t(1)
2 − t(1)

1 )(t(1)
1 − z2)

)
v+ ⊗ E2

2,1v+

=
( 1

(t(1)
1 − z1)(t(1)

2 − z2)
+

1

(t(1)
2 − z1)(t(1)

1 − z2)

)
E2,1v+ ⊗ E2,1v+.



CONSTRUCTION OF A DIFFERENTIAL OPERATOR FROM

A CRITICAL POINT?

Consider the Gaudin model associated to the tensor produc of vector
representations of glr+1. Let yt = (y1, . . . , yr) represent a critical point
t. Define

D(y) =
(
∂ − ln′

T1

yr

)(
∂ − ln′

T1yr

yr−1

)
· · ·
(
∂ − ln′

y2T1

y1

)
(∂ − ln′ y1),

where T1(x) = (x− z1) · · · (x− zn).



HIGHER GAUDIN HAMILTONIANS

Given an N ×N matrix A with possibly non-commuting entries aij,
we define its row determinant to be

rdet A =
∑
σ∈SN

(−1)σa1σ(1)a2σ(2) . . . aNσ(N).

Define the differential operator DB by

rdet



∂u −
n∑

s=1

E(s)
1,1

u− zs
−

n∑
s=1

E(s)
2,1

u− zs
. . . −

n∑
s=1

E(s)
r+1,1

u− zs

−
n∑

s=1

E(s)
1,2

u− zs
∂u −

n∑
s=1

E(s)
2,2

u− zs
. . . −

n∑
s=1

E(s)
r+1,2

u− zs

. . . . . . . . . . . .

−
n∑

s=1

E(s)
1,r+1

u− zs
−

n∑
s=1

E(s)
2,r+1

u− zs
. . . ∂u −

n∑
s=1

E(s)
r+1,r+1

u− zs


.



It is a differential operator in variable u, whose coefficients are formal
power series in u−1 with coefficients in End

(
(
⊗n

s=1 Lλ(s))
sing
λ

)
,

DB = ∂r+1
u +

r+1∑
i=1

Bi(u)∂r+1−i
u ,

where Bi(u) =
∑∞

j=i Biju−j and Bij ∈ End
(

(
⊗n

s=1 Lλ(s))
sing
λ

)
, for all

i = 1, . . . , r + 1, j ∈ Z>i. The operators Bi,j are called the higher
Gaudin Hamiltonians.

The higher Gaudin Hamiltonians for arbitrary simple Lie algebras
were introduced by [Feigin-Frenkel-Reshetikhin 1994], see also
[Molev 2013].

Theorem (Talalaev 2004)
The operators Bi,j generate a commutative subalgebra in

End
(

(
⊗n

s=1 Lλ(s))
sing
λ

)
and they commute with the action of glr+1.



THE B. AND M. SHAPIRO CONJECTURE

If V ⊂ C[x] be a vector subspace of dimension r + 1. The space V is
called real if it has a basis consisting of real polynomials.

The B. and M. Shapiro conjecture: Let f, . . . , fr+1 be a basis of V. If all
roots of the polynomial Wr(f1, . . . , fr+1) are real, then the space is real.

Sketch of proof: First we reduce it to the case that all roots have order
1.Define a differential operator with kernel V. It corresponds to a
Bethe vector in the tensor product of vector representations. Another
important observation is that the higher Gaudin hamiltonians are
symmetric with respect to a positive definite form(Shapovalov form).
Note that the higher Gaudin hamiltonian is symmetric, it must have
real eigenvalue. It follows that the coefficients of the operator are
real.Q.E.D.



SELF-DUAL SPACE

Let λ(1), . . . ,λ(n), λ be partitions with at most r + 1 parts and
z1, . . . , zn distinct complex numbers. For U ∈ ∆Λ,λ,z and
g1, . . . , gi ∈ U, define a polynomial

Wr†(g1, . . . , gi) = Wr(g1, . . . , gi)

i∏
j=1

Tj−i−1
j ,

the divided Wronskian with respect to X, where Ti, i = 1, . . . , r + 1,
are defined by

Ti(x) =

n∏
s=1

(x− zs)
λ
(s)
r+2−i−λ

(s)
r+3−i ,

where λ(s)
r+2 = 0, for all s = 1, . . . ,n. Denote U† the space spanned by

Wr†(g1, . . . , gr) for all gi ∈ U. U† is called the dual space of U. A space
of polynomials U is called self-dual if U = U†.
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